
L.

_|

i L,

L

H)EF3 Technical Report
Version 1.0

_chard J. Mayer

Christopher P. Menzel

: i_:_pa_la S.D. Mayer

Know!edge Based Systems Laboratory
Depar tment- 0 fin-dustrial Engineering

Texas A&M University
College Station TX 77843

Reviewed by
Michad-K, Painter, Capt, USAF

Armstrong Laboratory

Logistics Research Division

Wright-Patterson =Air Force Base, Ohio 45433-6503

:_ _=_January 1991

i

| - ,

: ?

i

L

(NASA-CR-I90279) {RESEARCH ACCOMPLISHED AT

THE KNOWLEDGE BASED SYSTEMS LAB: IDEF3,

VERSION 1.0] (Texas A&M Univ.) 56 p

N92-26587

G]/_I

Unclag

0086873

== ;

IDEF3 Technical Report
Version 1.0

Richard J. Mayer
Christopher P. Menzel

Paula S.D. Mayer

Knowledge Based Systems Laboratory
Department of Industrial Engineering

Texas A&M University

College Station TX 77843

Reviewed by
Michael K. Painter, Capt, USAF

Armstrong Laboratory
Logistics Research Division

Wright-Patterson Air Force Base, Ohio 45433-6503

January 1991

umd

w

_- :7.

m

w

F_

W

L

r

Preface

This paper describes the research accomplished at the Knowledge Based
Systems Laboratory of the Department of Industrial Engineering at Texas
A&M University. Funding for the Laboratory's research in Integrated
Information System Development Methods and Tools has been provided by the
Air Force Armstrong Laboratory, Logistics Research Division,
AFWAL/LRL, Wright-Patterson Air Force Base, Ohio 45433, under the
technical direction of USAF Captain Michael K. Painter, under subcontract
through the NASA RICIS Program at the University of Houston. The authors
and the design team wish to acknowledge the technical insights and ideas
provided by Captain Painter in the performance of this research as well as his
assistance in the preparation of this report. Special thanks goes to the IDEF3

design team whose names are listed below:

Dr. Richard J. Mayer
Dr. Christopher P. Menzel

Dr. Paula S.D. Mayer
Dr. Thomas Cullinane

Dr. Douglas D. Edwards
Martha S. Wells
Shashank Joshi

Thomas M. Blinn

2

w

W

w

w

w

U

w

iL
w

Summary

This document describes a language for the representation of process and

object state centered system descriptions. IDEF3 is a scenario driven process
flow modeling methodology created specifically for these types of descriptive
activities. IDEF3 is based upon the concept of direct capture of facts about

processes and events in a form that is natural to domain experts in a given
environment. This includes the capture of facts about the objects that

participate in a process, facts about those objects, as well as the precedence,
and causality relations between processes and events. The goal of IDEF3 is to

provide a structured method for expression of the domain expert's knowledge
about how a particular system or organization works. An IDEF3 description
can be used to provide the data for many purposes including:

Recording the raw data resulting from fact finding
interviews in systems analysis and knowledge
engineering activities,

Determination of the impact of an organization's
information resource on the major operation
scenarios of an enterprise.

. Documentation of the decision procedures affecting
the states and life cycle of critical shared data
(particularly manufacturing, engineering,
maintenance, and product definition data),

5. System design, design tradeoff analysis, and
simulation modeling

Two modes exist within IDEF3, process flow description and object state
transition description. A process flow description is intended to capture

knowledge of "how things work" in an organization, e.g., the description of
what happens to a part as it flows through a sequence of manufacturing

processes. The object state transition description summarizes the allowable
transitions an object may undergo throughout a particular process. Both the
Process Flow Description and Object State Transition Description contain
units of information that make up the description. These model entities, as

they are called, form the basic units of an IDEF3 description. The resulting
diagrams and text comprise what is termed a "description" as opposed to the
focus of what is produced by the other IDEF methods whose product is a
"model".

3

-!

E Z

r_

Z

An IDEF3 Process Flow Description captures a description of a process and
the network of relations that exists between processes within the context of the

overall scenario in which they occur. The intent of this description is to show

how things work in a particular organization when viewed as being part of a
particular problem solving or recurring situation. The development of an
IDEF3 Process Flow Description consists of expressing facts collected from
domain experts in terms of five basic descriptive building blocks. Each of
these building blocks will be described and illustrated in subsequent sections of
this document.

tram 4

w

w

w

m

!.0 Introduction and Background

The original IDEFs were developed for the purpose of enhancing
communication among people who needed to decide how their existing systems

were to be integrated. IDEF0 was designed to allow a graceful expansion of
the description of a system's functions through the process of function
decomposition and categorization of the relations between functions (i.e., in
terms of the Input, Output, Control, and Mechanism classification). IDEF1
was designed to allow the description of the information that an organization
deems important to manage to accomplish its objectives. The third IDEF
(IDEF2) was originally intended as a user interface modeling method.
However, since the ICAM Program needed a simulation modeling tool, the

resulting IDEF2 was a method for representing the time varying behavior of
resources in a manufacturing system providing a framework for specification
of math model based simulations. As a result, the lack of a method which

would support the structuring of descriptions of the user view of a system has
been a major shortcoming of the IDEF system of languages. The basic
problem from a methodology point of view is the need to distinguish between
a description of what a system (existing or proposed) is supposed to do versus
a representative simulation model that will predict what a system will do. The
latter was the focus of IDEF2; the former is the focus of IDEF3. There are

two additional description capture IDEF methods under development: IDEF5
will be a method for knowledge acquisition, and IDEF6 will be a method for

capture of information system design rationale.

The second class of IDEF methods that have been developed are focused on

the design portion of the system development process. That is, they
encapsulate the best known method for design with a particular technology (or
class of technology.) Currently there are two IDEF design methods, IDEF1X
and IDEF4. IDEF1X was developed to assist in the design of semantic data

models. IDEF4 was developed to address a need for a design method to assist
in the production of quality designs for object oriented implementations.
IDEF4 like IDEF1X is intended to service the needs of the systems designers

and programmer analysts who are building and evolving large information
systems. Unlike IDEF1X which encapsulates a design method for relational
database design, IDEF4 encapsulates the principles for design of object
oriented applications and databases. Figure 1 illustrates the planned areas of
application for the IDEF methods relative to an updated Zachman framework
for information system architectures [Zachman 86, IUG 90, and Mayer et al.
89].

5

DATA USER

List of Things List of Scenarios
Important to the the User Performs
business

_-- IDEF0BSP
BSPIDEFO "----"

.=====..,

ENTITY = Class of

Business Thing

W

w

OBJECTIVF_Xt
SCOPE

DOMAIN
MODEL

MODEL
OF THE
BUSINESS

MODEL
OF THE
INFORMATION
SYSTEM

e.g. Concept Model

ENT = Bus. Con.
Rein = Association

e.g., Entity /
Relation Diagram

e.g. User Role
Description

IDEF3

e.g. Organization
Process Descrip.

FUNCTION NETWORK

List of Processes 'List of Locations
the Business in which the

performs businessoperates

IDEF0 _

_ l_'.-5"7-.{
P_ss = Class of _-. - /

Business Activity

e.g. Business
Process Descrip.

?

IDEF1

ENT = Irffo. Entity
Rein = Bus. Rule

e.g., Data Model

IDEF3

e.g., Transaction

IDEF3

e.g., Function
Flow Diagram

e.g., Logistics
Network

Node= Bus. Unit
Link= Bus. Relatn1DEFO

e.g., Data

ENT = Data Entity
Rein = Data Rein

e.g., Data Design

model

IDEF3

e.g., Object Design

Flow Diagram

DFD

e.g., Structure
Chart

e.g., Distributed
System Arch

9

Node=US Func.
Link=Line Char.

TECHNOLOGY
MODEL

ENT = Se_-rnent
Rein = Pointer

IDEF4

SCG

e.g., System Arch

DETAILED
REPRESEN-
TATIONS

FUNCTIONING
SYSTEM

e.g., Data Design
Description

ENT = Field
Rein = Address

e.g., Data e.g., Scenario

?

Node=Hardware

Link=Line Spec.

e.g., User Inter- e.g., Program e.g., Network
Face Code Architecture

e.g., Function e.g., Communication

Figure 1. Updated Zachman Framework

6

-- s

W

w

One of the primary mechanisms used for descriptions of the world is relating
a story in terms of a ordered sequence of events or activities. The IDEF3
method for process description capture is designed to capture descriptions of

the process flow and object state transitions associated with a particular
situation (scenario). A scenario can be thought of as (1) a sequence of
activities that constitute a particular process or event, (2) a set of situations
that describes a problem in an organization or system, or (3) a process
description in a given setting. The IDEF3 method is designed to be used by
both the area expert and an anaTyst / modeler for capturing the knowledge of
the area expert about how a particular process, event, or system works.

IDEF3 was also designed as a mechanism for recording facts that analysts

capture either from direct observations or interviews within a particular
domain. The method provides the capability for capturing the temporal (time-

related) precedence and causality relationships about the process or event.
IDEF3 uses the context of the scenario essentially to drive this description

capture method by providing a boundary to what information the description
will cover. The IDEF3 method presents the description capture within an
environment that is natural for the area expert to use to describe his

knowledge about his area. The purpose of such a description is to provide the
data for:

• Determination of the impact of an organization's information resource
on the major operation scenarios of an enterprise.

• Documentation of the decision procedures affecting the states and life

cycle of critical shared data, in particular, manufacturing, engineering,
and maintenance product definition data.

• System design and design tradeoff analysis.

• Determination of the pragmatic data models or how the semantics of

data are used by the enterprise.

It should be noted that many of the uses of IDEF3 proposed in Figure 1 are
direct extrapolations from uses of informal process flow modeling in the

system development life-cycle as described in the early phases of the IDEF3
development activities. Much of the thinking behind IDEF3 has been heavily
influenced by those experiences, particularly the experiments performed by
Edwin I. (Sam) Nusinow of Knowledge Based Engineering Enterprises in his

work modeling engineering data management and control processes.
Similarly, many of the interesting ideas behind the semantics for junction

7

types that will be described later in this document were originally suggested
by Timothy Ramey and Stu Coleman of Pacific Information Management, Inc.

r :

1.1 Motivations behind the Development of IDEF3

The motivations which drove the requirements and development of the IDEF3
method address three basic needs.

First, there is a need for a method to describe design data life cycle
characteristics. That is, this method will describe how technical data are

managed during the development stages and the life cycle of a product.

i

L_

__=

r

i

L_.=

Ii

a_

Second, there is a need for a method to formalize external-constraint

driven requirements definition methods. Such a method should (1)
provide a description of the functional constraints on a system imposed
by its operational environment and (2) communicate how the system
will be used once in place.

Third, there is a need for improved productivity in the system analysis

model development process. The benefits of having this type of method
would allow the system analysis model development process to be done

faster and yet produce more correct, consistent models with the result
of a reduction in the overall cost of enterprises analysis.

Each of these needs will be discussed in more detail.

The first major need was for a method to describe design data life cycle
characteristics. One approach to a successful initial information integration

strategy is to start with the control of the configuration of engineering design
data within a manufacturing organization. To achieve this control, one must

first map out (1) the design artifacts or the containers of design information,
(2) the state transitions through which these artifacts proceed, and (3) the
decision logic that is used to determine the state transitions. Since these
transitions are largely affected by the activities of the associated organizations,
this requires a definition of the activity sequence and decision making logic of
the organization. _......

The second major motivation behind the development of the process flow
method was the need for a method to formalize external-constraint driven

m

L _

w

requirements definition methods. It has been repeatedly demonstrated in
practice that an effective mechanism for the design of a new system is to
describe an ordered sequence of the activities as they would be experienced in
the organization within the context of a given scenario. This process
description is then used as a framework for proposing alternative external
views of possible information systems to support the activities of the
organization within the given C0ntext. Such development (design) approaches
have been referred to as External-Constraint driven design approaches. Once

this framework is established, each organizational activity can be used as a
context for describing what the application would do to support that activity
from the participant's perspective. In the Air Force Integrated Design Support
(IDS) program, the what was represented as a sequence of man�machine
actions, where the machine presented a prompt (or a form to fill out) and the
human responded with the appropriate action. The general method used in
such an approach can be an effective requirements definition mechanism,
particularly if combined with the IDEF0, IDEF1, and IDEF1X methods.
IDEF3 was designed to be extended naturally to serve as a tool for such an

external constraint driven design method.

The third major motivation behind the development of the process flow
method was the desire to speed up the process of business systems modeling.
The experience of the technical coalition who identified such a need was that
'description of process flow' is one of the most natural ways to introduce an
organization expert to information system modeling. A proven interview
method for systems analysts traditionally starts with the identification of the
major problems or situations that the domain expert deals with daily. Using
each of these as a scenario or focus point, the area expert can easily describe
what decisions, activities, and events surround or are included in the normal
processing of such a problem 0r s_tuation. The design of IDEF3 capitalizes on
this phenomenon by making the first step of the method the requirement to
identify the scenarios. As stated in the Introduction, this has the effect of the
scenario driving the resulting IDEF3 practice. The IDEF3 method provides a
structured way to communicate this descriptive information. Once this

descriptive information is captured, the resulting structure and information
can be easily used as a framework for construction of the other IDEF3
models.

As a result of these motivations, the IDEF3 method must provide (1) the
concepts, (2) syntax, and (3) procedures for building 'requirements
descriptions'. These requirements descriptions of a system must be adequately
detailed to determine if a system received is acceptable. This implies that the
IDEF3 method must support the following descriptions:

w

9

[_

i

Lk
w

w

• Descriptions of scenarios of organizational activities.

• Descriptions of the roles of user types in these organizational activities.

• Descriptions of user scenarios or user interaction with the information
system at the user function level.

• Descriptions of what the system is to do in response to the user
functions.

• Description and delineation of user classes.

• Declaration of timing, sequencing, and resource constraints.

• Description of user interface objects (menus, keywords, screens,

displays).

The last requirement of interface description implies the need to incorporate
either (1) a formal language for display description or (2) the ability of the
method to incorporate by reference (or insertion) drawings or sketches of the
desired interface. At this time, the IDEF3 design has taken the latter option.

1.2 Applying the IDEF3 Method in Practice (How does it fit in?)

/DEF3 will be used in a multi-layer environment including (1) the area expert
/ practitioner layer, (2) the analyst / modeler layer, (3) the systems design
layer, and (4) the meta-layer or tool ***rio is the preceding 'or tool'
correct***. Layers are differentiated by the type of information IDEF3 will
provide the participants at that level. For instance, IDEF3 models will be used
for generation of (1) reports by the area expert / practitioner layer, (2)
simulation models by the analyst / modeler, and (3) computer language code
in the systems layer. The IDEF3 method will be applied in a series of four
steps: (1) Identify the scenarios. (2) Within a scenario, perform the modeling
exercise by preparing a diagram of the process or event. (3) With the diagram
produced, the method will require an elaboration in natural language text to
support the diagram. (4) As necessary, decompose scenarios further and
repeat the modeling activity for each scenario produced.

The IDEF3 method captures facts and constraints. Facts are stated in simple
sentences that describe an operation in the description of an event or process
within the scenario. One guideline governing the statement of facts is: If not
recording something is going to give a reader a problem understanding the
description, then the modeler should record it. Constraints are background
conditions or preconditions necessary for the operation to occur. Sometimes
the distinction between a constraint and a fact is difficult to determine, but

10

w

_-__
7 :

L =

there are general guidelines for recognizing the differences between facts and
constraints. In general, for example, if a statement contains a "negative"
(words such as "not," "never," "no"), then that statement is a constraint.

IDEF3 will be used by the practitioner or area expert as a data collection tool.
At this layer, the area expert will attempt to determine (1) what gets acted
upon (put on the IDEF3 object list) and (2) the mechanism and causes for
these actions. From there, the data collection will be used by an analyst /

modeler to provide the graphical syntax from the descriptions.

_4

W

J

E_

.....

w

L_

U

w

w

1.3 Introduction to Situations and their Descriptions

The arguments presented in the previous sections were put forth for
answering the question "Why a process flow description capture method?"
Other equally important (and often asked) questions would include:

• Why

• Why

• Why

• Why

• Why

did IDEF3 come out like it did?

the focus on descriptions rather than idealizations?

not adapt / extend IDEF0 to just add in activations?

not adapt / extend IDEF1 to just add in event classes?

not use a simulation modeling language (e.g.,

queueing network language (e.g., Petri nets)?

IDEF2) or a

The purpose of this section is to address these questions by introduction of the
theoretic influences behind the method. From a summary view, IDEF3 is very
different in nature from existing system engineering modeling methods in that

it was not designed as a modeling tool but rather as a language for the
organization and expression of process descriptions. This description capture
nature and many of the motivational concepts on which IDEF3 is based come
from the pioneering work of Dr. Sijjr Nijssen and Mr. Max Wilson who first
promoted the notion of an information system as the embodiment of a
discourse situation between agents in an organization. The work of Dr. Jon
Barwise who initiated situation theory and situation semantics was also a
principal motivation of the concepts behind IDEF3. That theory promises to
provide the theoretic basis for a new understanding of how any such discourse
situation can come about and what flow of information can be supported by
such a discourse situation.

E: i

11

1.4 Description versus Models

The history of process modeling is long and illustrious. However, process

modeling requires skills and experience beyond those normally available to the
individuals needing the analysis results obtained from process models.

It is important first to distinguish between models and descriptions. We
emphasize that while models may well be constructed from descriptions, our
task is not the construction of models, but the formal representation of

descriptions and the information they convey.

To get at the distinction, a model can be characterized as an ideal system of
objects, properties, and relations that is designed to imitate in certain relevant
respects the character of a given real-world system. The power of a model
comes from the ability of a model to simplify the real-world system it
represents, and to predict certain facts about that system in virtue of
corresponding facts within a model.2 Thus, a model is, in a sense, a complete

system. For it to be an acceptable model of a given or imagined real-world
situation, it must satisfy certain "axioms" or conditions derived from the real-

world system.

A model can be characterized as an idealized system that we design to have
certain elements with defined properties within a particular structure. The

general idea of model making is to look and see what other properties the
model has beyond those we have designed. The power of the model comes
from the ability of a model to predict properties (relations) which turn out to
hold in the real world. That is, models are known to be incorrect but assumed

to be "close enough" to provide reliable predictors of the real properties of
the domain of interest. The danger of modeling is in conflation of the real
world with the model elements and structures we have designed to model that

world. The difficulty in using models lies in the knowledge required of

idealized systems that can serve as reliable predictors as well as the knowledge
required to apply those reliable idealizations to a particular situation (to say
nothing about the knowledge required to detect when the application has
failed).

A description, on the other hand, is a recording of facts or beliefs about the
world around us, recording our observations or beliefs. As such, descriptions

are in general partial; a person giving a description may omit facts either
because they do not seem relevant or by error. Thus, there are no
preconditions on an acceptable description either for accuracy or completeness

2 See (Corynen, 1975) for a detailed analusis of this phenomena.

12

i

L_

g

= =

maw

w

m

z

L

and no 'axioms' to be satisfied. Descriptions are assumed to be true, but
incomplete. In fact, one very powerful use of models is to fill in the gaps in

our descriptions. The accumulation of descriptions is thus prior to and distinct
from the construction of models. Generally, the conditions one puts on
acceptable models are derived from descriptions one receives from domain
experts; they are, so to say, the data from which models are built. The
importance of descriptions is that they serve as sources of information to a
model designer when observations are inconvenient or impossible. That is, it
is unlikely that a systems analyst will actually witness all the phenomena that a
person who has spent ten years or more in the domain will have witnessed.

Description formulation often employs abstractions. Abstractions are
distinguished from idealizations (the stuff that models are made of) in that
instances of abstractions are assumed to have realizations in the real world,
whereas instances of idealizations are not restricted in this manner. One

advantage of descriptions is that those working in the domain generally
require less training to produce reliable instances of descriptions of their
domain. A disadvantage of descriptions has been the lack of effective means of
organizing those statements of facts. IDEF3 is proposed as one such
organizing description capture mechanism.

Descriptions are thus essential to the model building process. An accurate
treatment of such descriptions requires two components, one having to do with
the descriptions themselves as linguistic entities, the syntactic component, and
the other with their content and the information they convey, the semantic
component. That is, on the one hand, it is important that there be an effective
means of representing the descriptions themselves, a means of capturing their
logical form. On the other hand, there must also be a rigorous account of their
information content.

Languages to support the representation of models provide constructs for
capturing the parameters of the idealized elements and the construction of
systems of those elements. In comparison, a language to support the capture
of process descriptions must allow for the formation of the abstraction
elements needed for a particular situation and allow for the statement of facts
about specific instances of those abstractions. In addition, description capture
languages must also support the statement of facts about the relationships
between abstraction elements and between possible instances of different
abstractions. These requirements result in very different language structures
between a modeling language and a description capture language. The
following illustrates some of the differences between a process description and
process models such as:

13

w

m

w

• Flow charting languages have (1) no capability to describe asynchronous
behavior, (2) limited capability to support decomposition, (3) no

capability to describe objects, properties, and relations between objects,
and (4) no capability to describe enablement relations between

processes.

• Network simulation languages have (1) limited capability to describe
relations between objects, (2) some object and property capabilities, (3)

no support for partial information description, (4) fixed elaboration of

process descriptions, and (5) no decomposition description relations.

• Simulation programming languages (i.e., simulation languages that
either are full-fledged programming languages or allows entry into a

programming language) generally have no primitive support for (1)
decompositions, (2) enablement relations, or (3) partiality. However,
while they could be used to implement a description capture system for
the language we have defined, there would be no advantage in doing so
and many disadvantages.

w

w

w

w

w

w

Any well-formed language consists of both a syntax including a vocabulary
and grammar and a semantics including a method of ascribing meaning to
statements formed in that language. The above discussion of differences
between a modeling language and a description capture language has focused

primarily on syntactic differences. However, these syntactic differences are
indicative and sometimes inseparable from more basic semantic differences.
To achieve the predictive power of an idealization, the interpretation of
statements in a modeling language is restricted to rigidly defined mathematical
structures which do not consider context of use. That is to say the 'real world'

interpretation of a system described in such a language is left to the modeler.3
Unfortunately, this limits the amount of information that can be communicated
with such a language. A description capture language must provide for the

capture of this 'context of use'. It also implies that such a language must have
a semantics that is designed to or at least attempt to take into account the

mapping between statements used to form a description and the human
interned understanding of the situation so described in the statements of that

language.

3 This is not a criticism of such languages, since it is the source of proven power. In fact, the discovery of such
context independent mathematical structures is a driving force behind most research. This context indepenedent

intepretation contributes to the "efficiency" quality of a modeling language; which is to say that the same model
can be used in a predictive capacity in many situations (think of the number of phenomena that are modeled with

simple first order differential equations).

14

1.5 Need to Facilitate the Flow of Information

w

w

w

w

A basic objective of any system engineering method is the facilitation of the
flow of information between two or more situated agents including:

1. The domain experts affd =their management,

2. The domain experts and the systems analyst,

3. Systems analysts with different areas of responsibility,

4. The analysts and designers,

5. Designers and lead programmers,

6. The lead programmers and their programming staff.

Each of the above mentioned roles as well as many others has a part to play in
the evolution of an existing system or the development of a new system.
Depending upon the role _iad the particular circumstances of the
communication discourse, the information transfered has different effects. An
analyst experienced in certaiia problem situations and technology capabilities

needs accurate descriptions of the 'AS IS' environment. Even if his services
are merely engaged to review the results of an ad hoc design, he must obtain
knowledge about the current situation in order to interpret his experience.
The analyst must communicate the constraints that must be met by the new
system for it to achieve its goals. The designer must obtain information about
both the existing system that he must interface with and the constraints that the
system must operate within. Thus, the same sentence or model carries
different meanings for different people at different times in this development

process.

1.5.1 Communication and the Flow of information

w

w

w

In each of these communication encounters, the agents involved are
communicating information about a piece of the world that they have
experienced or find themselves in. The name we use to refer to that carved-
out piece of the world is a situation [Devlin 91]. Communication between
agents is viewed as process of information flow between situated agents. The
acquisition of such knowledge, belief, or observation is tied to the perception
of the parts of the world that the agent is attuned to. As in [Devlin 91]
"Information flow is made possible by certain (what will be called) constraints

15

L

w

w

F,

w

LJ

r_

m

that link various types of situation." Attunement to such constraints then is a

prerequisite for information flow and hence for communication between
situated agents. The design of IDEF3 can be viewed as an attempt to provide
an organizational framework for the capture of descriptions of situations and
the constraints which will allow for the efficient communication of those

situations to the agents involved in the system development process.

The early IDEFs met this challenge of enhancing communication by intuition
and experience of the development team without a formal underpinning.
IDEF3, however, has been designed with both a basis of a strong underlying

theory as well as the intuition and pragmatic experience of the development
team. We have taken advantage of emerging theories of knowledge and the
flow of information, specifically Situation Theory [Barwise and Perry 83].
IDEF3 was designed from theory to practice rather than the other way around
with the anticipating of a resulting method which will have better first-time

performance.

The previous discussion of the motivation behind the definition of a new
method for process flow and object state description points to two specific
needs. One need is for a metho d to support the development of a mechanistic
description of how an organization solves a particular type of problem.
Another is the need to describe how an existing or proposed information

system supports or will support the organizational process. Additionally, a
third need is for a method to support the description of what the 'interaction'

will be between agents and the information system. In the past, we were
primarily concerned with human agents or users. In an integrated
environment, we must recognize that a significant class of agents will be other

information systems.

1.6 Understanding the Common Sense Notion of "Process"

To understand the idea of capturing process descriptions, it is first necessary
to know what we mean by a process. We are not using the term in a technical
sense, but rather in an ordinary language sense, keeping with IDEF3's role as
a methodology for acquiring the intuitive knowledge of domain experts.
Unfortunately, the term 'process' is quite ambiguous in English. Therefore,
we will refine our understanding of process terminology in ordinary language
before we can characterize the intended sense of 'process' more clearly.

Since we are interested in capturing a human's understanding of the world
around him and how it works, it is necessary to characterize the concept of a

16

w

W

W

process in view of that understanding. Such a characterization is bound to be
difficult since the notion of 'change' is basic to the concept of process.

Intuitively, the term 'process' is used to describe an isolatable event or
occurrence. As such, it can be assigned a more or less definite starting point,

typically associated with the satisfaction of certain antecedent conditions, and
continue indefinitely. A process will, in general, involve objects with certain

(perhaps changing) properties standing in specified (perhaps changing)
relations. A process can also stand in relation with other processes, e.g., a

process can start, suspend, and terminate other processes. That is, objects or
information about objects can be shared between processes. In addition, one

process can change the properties of such a shared object and cause the
exclusion of another process execution. One interesting characteristic of the

concept of process is the lack of a physical perception of a process. One can
observe the objects and their properties or relations, but not the process itself.
Possibly as a side effect of this phenomena, the concept of a process has a well
established type versus instance distinction which is so accommodated by the

language as to be obscured. For instance, we previously noted that a process
can start another process. Strictly speaking, this means that that an instance of
one process can start an instance of another. This distinction between type and
instance turns out to be central to much of what is difficult in the capture and

representation of process descriptions. It also strongly affects the reasoning
with or general processing of such descriptions.

There are a number of problems associated with any attempt to describe

change. Some of these problems are definitional in nature, such as defining
terms as 'process', 'event', and 'activity' as well as characterizing the
difference between these concepts. Presuming a consistent definition, the next

stumbling block comes from the difference between the orderings and
relations which can be established between types of such concepts and those

which apply to instances of such concepts. For example, simple relations like
before which can unambiguously be applied to event instances (e.g., I ate
supper before I typed this section) require considerable elaboration if applied
at the type level. If one activity type precedes (follows, overlaps, etc.) another
activity type, it may not necessarily imply that all possible instances of one
activity type precede all possible instances of the other. More often, it means
that the instances of the two activities are pairwise related such that each

instance of one activity precedes a corresponding instance of another activity.
In fact, it is often the case that an even stronger relation is implied, where an
instance of the first activity instance in the pair causes an instance of the
second to occur. Such ambiguity in type-based activity descriptions can be
resolved with additional specification mechanisms although there is a trade-off
of understandability versus accuracy. Unfortunately as the level of specificity
increases, there is a corresponding decrease in the comprehensibility of the

17

W

J

models. Traditionally, the basic situation has been an untenable one;
descriptions of large systems could either be accurate or comprehensible. With
IDEF3, however, a structure is provided that can tolerate partiality in the
description allowing both comprehensibility and accuracy.

It is crucially important to distinguish between 'process types' and 'process
instances', or 'individual processes'. Indeed, it is important to distinguish
generally between types and instances with regard to many other kinds of
entities as well. We think of an individual process as a definite occurrence
with a specific time and place. Process types may be thought of as classes of
individual processes or properties that individual processes may have. It is
unfortunate that the English language does not distinguish between process
types and individual processes: The word 'process' can refer to either. For
example, consider a constraint of "A request for change must be logged in
before it can be presented at a meeting of the configuration control board."
This constraint does not refer to the class of objects request(s)for change or
the logging-in event type or the meeting event type. These references do not
point to a particular object or event, but rather they refer to a prototypical
object or event. A prototypical object or event refers to the general type of
events and not a particular object that exists or an event that has occurred.
IDEF3 uses the term indeterminate to identify a prototypical object or
event. An actual particular instance can be differentiated from an
indeterminate by providing c_aracteristics of the particular instance that
provide a definite temporal or spatial reference. The term 'type' is appended
to an event or activity reference to refer to this general group of prototypical
events or activities.

Unfortunately, many of the relations and constraints to be described in a

process flow description refer to or involve instances of these indeterminate
types of a request for change and an instance of the logging-in event type and
an instance of the meeting event type. Therefore, IDEF3 method provides the
means for talking about instances, indeterminates, and types. In the following
sections of this report, we will often use the term 'instantiation' to refer to an
instance of a particular indeterminate or prototypical event or state of affairs.
We will also use the term 'anchor' to refer to a set of instantiations which

adhere to the stated constraints associated with a particular process
description. This distinction between 'instances' and 'type' actually appears in
many systems engineering methods. For example, in IDEF1, we model entity-
classes but all the rules (such as the No Null and No Repeat Rules) operate on
individual members (or instances) of entity classes.

In IDEF3, however, we will attempt to maintain the distinction rigorously
whenever it matters. It does not always matter. For instance, it does not

18

w • •

W

w

w

matter in very general contexts (as above) or where the term 'process' occurs
as an integral part of phrases like 'process flow description capture' or
'process model'. Process types may vary from general to specific. An
individual process p which is among those picked out by a process type P will
be called an instance of p. If process types P and Q are such that any type
instance of P is also used in an instance of Q, then P is said to be a subtype

of Q. Similar terminology isused for types and individuals of other varieties

than processes.

On important note about the more general use of the term individual: not all
individuals are concrete entities. Some types, like number, may have
instances which are abstract entities; these instances are nonetheless
individuals. In fact, the term 'individual' is really more or less synonymous

with 'instance'; a thing called an individual only with a tacit reference to some

type of which it is an instance.

1.6.1 Narrow and Broad Senses of "Process"

Another problem in describing processes in English arises from the language's
intense focus on the details of temporal succession, characteristic of

IndoEuropean languages.

There is a sense of 'process' in which the word is distinguished from 'event',
'state of affairs', 'eventuality', 'occurrence', or any number of other words of

this general class. In fact, there are several such senses of 'process', each
stressing a different kind of distinction between processes and other things of
this general kind. For instance, in one sense processes are supposed to have
internal structure. An example of this sense would be where each instance of a

given process type is supposed to be divisible into temporal subparts which are
process instances of the same process type, whereas this would not be true for
certain other conceptions of process. The linguist and philosopher Zeno
Vendler [Vendler 67], among others, has gone into great detail in classifying

things of this kind, coining individual terms for concepts represented by
variations in meaning in English.

On the other hand, there is another sense of 'process' synonymous with
'event'. In this sense, the extensions of any of the other terms listed in the

preceding paragraph would be subsets of the class of processes; a process is
anything of the general kind described in the preceding paragraph. It is this
broadset sense of 'process' with which we are concerned in IDEF3; the
Vendlerian classification is irrelevant to our purposes. IDEF3 has its own

ways of distinguishing one kind of process from another based on the internal
structure of the instances. The precise technical term we have invented for

19

w

D

J

m

w

=
w

w

processes in this broad sense is 'unit of behavior' or UOB, which simply
means a process or event, in the most general senses of those terms. We
continue to write simply 'process' where we feel it will be clear that any UOB

is meant, not just a process in some narrower sense.

Besides the type instance issues there are other issues including:

• Representation of a situation view (some arbitrary complex set of
objects with properties standing in relations within some space time
bounds). We use the term 'situation view' because a different observer
might and almost always will describe a different set of objects,

properties, or relations at the same space time boundary.

• Changing situations in which nothing is happening except time moving
forward (states of affairs, so to speak).

• Changing situations in which what is happening may be happening too
quickly or slowly to perceive (i.e., glue drying).

• Models of time, time granularity, and measurement systems (the tau
problem) and issues of ordering things in general.

° Concurrency versus sequentiality.

o Causality versus enablement versus coincidence (an issue of
descriptions or judgments made on descriptions).

• Common sense notion of object persistence (if it is not mentioned then it

does not change, e.g., occurrence of the same free variable across
boxes). Conservation of objects contribution to the frame problem.

• Call no waiting, call waiting, the assumed return to a previous state.
That is, issues that particularly arise in describing man/machine

interaction processes.

Complexity of possible relations.
links.)

(The result being to build your own

Instancing issues, i.e., rates.

1.6.2 Situation Based Descriptions of Processes

The manner in which this tolerance is achieved can best be understood by

further exposition of the Situation Theory which motivated the IDEF3 design.
As mentioned previously, situations name pieces of the world that an agent is
both a part of and attuned to. A real situation is made up of real objects

20

w

= =
w

z
w

w

I

w

=

w

standing in relations at some space-time location. It is important to note that
situation theory does not comment on the way the world really is. That is, it
does not suppose that the world is actually broken up into situational pieces,
only that our abilities to perceive the world around us are limited, and that
this 'reach' is reflected in our languages and reasoning methods. This is a

radical departure from traditional theories of logic and natural language
semantics. Those wishing to pursue the extent and implications of this
departure should look to [Barwise 83 and Devlin 91]. Because situations are
countenanced as perceptually based partitions of the world surrounding an
agent, their descriptions must capture the perceptions of the agent at a location
in space and time. That is, they must have symbol set and structures for
representing objects, relations, and spatio-temporal intervals.

It is best to think of these descriptions as abstract situations (a-situations)
corresponding to their real World Situations (r-situations). The a-situations
have several interesting properties. One of those has to do with whether or not
the a-situation is a factual deus9ription of the associated r-situation. That is, if
the description contains a reference to some objects standing in some relation
in the a-situation, do those objects stand in that relation in the r-situation? If so
then the a-situation is said to be factual. There are two other key notions
behind the a-situations. One is that they need not be 'complete' (sometimes
labeled 'actual' in the technical literature), meaning that there certainly will be

objects and relations at thespatio-temporal location which never get
mentioned in the a-situation. The other characteristic is that a-situations are

themselves first class-objects in the situation theory, implying that they can
stand in relations just as the elements of the r-situation that they describe. This
is a key property of the theory in that it allows for the formulation of a notion

of constraints as distinguished relations between types of a-situation
descriptions. It so happens that attunement to such intersituation constraints
can be used as a powerful mechanism for explaining the flow of information
between two situated agents.

The internals of an a-situation are represented by a language. In the IDEF3,
this language includes both a graphical and a linear text form. The key
elements of this language are symbols standing for:

• objects in the r-situation or other situations

• relations between objects

• spatio-temporal locators

• polarity indicators

• indeterminates (variables)

21

m

=

=

Real Situation

describes

<Part#,23781, Yes>

<Part-Program-ID,38-BI701,Yes>
<Status,Machine,Up,Yes>
<Status,Robot,Idle ,Yes> Machinist

<On,Part Machine,Yes>

<Running, Machine,Yes>
<Behind- schedule,Part,No>

Perceived

describes

<Chatter, Tool,Yes>
<Lubricant,Out, No>
<Old,Machine,Yes>

<Nervous,Manager,No>

Figure 1.2. Real versus Abstract Situations

With these primitives, one can build up higher level constructs of an a-
situation description language. For example, the expression including a

22

L

U
g

h

w

relation symbol and a set of objects (denoted <r,ol,o2,o3; i> where r stands

for a relation and the oj's stand for objects) is called a constituent
sequence. An example of such a constituent sequence might be <on, part,
conveyor>. Similarly, a constituent sequence including an indicator of whether
a particular set of objects stands in a particular relation (denoted <r,ol,o2,o3;

i> where r stands for a relation and the oj's stand for objects and the i stands
for a polarity) is called a state of affairs (also sometimes referred to as an
infon) An example of such a state of affairs expression would be <changed,
part, dimension; yes>. Collections of states of affairs with an associated spatio-
temporal locator make up the most elementary a-situation descriptions. For

example:

(here, now, <typing, ric, document; yes>

<sitting, ric; yes>

<operational, Macintosh; yes>)

Since an a-situation is itself an object in a situation theory language, collections

of such objects form complex descriptions referred to as courses-of-events.
There are circumstances under which it is convenient to form collections of
courses-of-events. Such collections are referred to as event-schemas.

Referring to the type token or type instance problem previously discussed is a
good way to understand the next level of a-situation descriptions, those which
involve indeterminates. Since a-situations are a part of the medium for
information flow, situation theory provides for some of the elements in a
description to have an indeterminant reference. For example, it is one thing to
describe the situation of 'my car broken down on a particular day at a
particular spot on a remote Texas country road', but we often want to describe
the more general situation (of being 'broken down on a lonely country road')
where the specific person place and time are unspecified (indeterminate).
Situation theory provides for this through the use of indeterminates standing
for objects, relations, or names. We can use an indeterminate in a situation
description to form what is called a role which corresponds very nicely to the
common sense notion of role. For example, the role of the machinist in a

machining course of events or the role of the initiator in a transaction course
of events.

As mentioned earlier, the last important type of expression is the 'constraint'.
Constraints are expressions that include conditions in elements of an a-
situation description that contains indeterminates or that include 'involvement
relations' between courses-of-events. Constraint expressions serve to tie

w 23

= :

w
situations together into structures that describe (if you will, larger situations)
the agent's perception of how the individual situations fit together. For
example, the arrival of a damaged aircraft involves the situation of initiating a
flight discrepancy report (or more intuitively, that the situation of kissing

involves touching).

In the IDEF3 method, the graphical syntax is focused on the description of
courses-of-events. The description of the actual objects, relations, and

constraints are relegated to elaborations associated with the course-of-events
that are expressed in the Information Systems Constraint Language (ISyCL)
[Decker and Mayer 89].

2,0 Syntax and Semantics

J

w

2.1 Basic Elements of IDEF3 Descriptions

The basic building blocks of IDEF3 are Units of Behavior (UOBs), Junctions,
Links, Reference Pointers, and Elaborations. Each of these components of a

description can be represented by variations in the formats of box-arrow
layouts and list type documents. The following sections describe the basic
elements of the process description language of IDEF3; combinations of these
elements are used to form precise descriptions of organizational systems. An
IDEF3 process description captures a network of relations between actions in

a specified scenario.

The basic symbol set of the IDEF3 process description language is displayed in

Figure 2.1. At the top of this figure, the Unit of Behavior (UOB) box is used
to represent complex states of affairs (normally courses of events or event
types as described above). These UOBs are organized into a network structure
where the connections represent constraints between the event types
referenced by the box label (see Figure 2.2). Though not displayed in Figure
2.1, each UOB element in a process flow model carries the following
attributes:

• Name (unique across the process flow).

° Label (displayed with the symbol).

° Text (a glossary entry).

24

The UOB node also carries with it the specification of a node number and an
optional IDEF0 cross reference. The rest of the graphical syntax elements in
Figure 2.1 including the junctions, links, and off-page references can be
viewed as shorthand notations to ease the specification of the constraints
between the UOBs. The solid links are shorthand for a precedence constraint
between two UOBs. The dashed links are used to indicate to the reader that a
special constraint between two or more UOBs have been specified and should
be examined by the reader. The dashed link has no default semantics and must
be queried for its meaning. The junctions are shorthand expressions for
logical and timing dependent combinations of precedence constraints. The
reference pointers are used to indicate off-page connectors or references to
elaborations (object relation descriptions or constraint specifications). Each of
these model elements will be described in further detail in the following
sections.

25

_m
w

w

E_
m

W

w

_4
I

VERB-BASED"
LABEL

Node# I IDEFRef#

Unit of Behavior

Function

Activity
Action

Process
Operation
Event

l] Junction
Type

[Junction
Type

Junctions

I Asynchronous

1 Synchronous

Precedence Link

Junction Type (Branch or Join)
AND (denoted &)
OR (denoted O)
XOR (denoted X')

Relational Link

_ Objeet_ow Link

Referent
Type/ID

Locator/Page #

Reference Pointe_

Reference Connection Type
El aborat ion
Constraint Specification
State Transition
Artifact / Object Description
Display Layout
Off-page Connection

w

2.2 Scenarios

Locator/Page #
I_A

cator/Page #

Asynchronous Synchronous

Referent Referent

Figure 2.1. IDEF3 Process Flow Description Lexicon

The basic organizing structure for IDEF3 process flow descriptions is the
'scenario' which provides the focus and boundary for the process description.
A scenario is simply a recurring problem or situation within the organization
being described that is used as a reference for organization of the process flow
description. A 'scenario name' is simply a text string which names or
identifies a typical problem solving activity or recurring situation within an

26

z

w

L

organization. Scenarios may often be taken directly from activities in an
IDEF0 model (if one exists). The following are examples of typical process
flow scenarios:

• Develop Die Design for Automobile Side Aperture Panel.

• Process Customer Complaint.

• Process Engineering Change Request.

A scenario name must be an action verb or phrase. It should be specific
enough to allow the readers / description reviewers / authors to make

judgements about the appropriateness of the content of the associated process
diagrams. As well as a name, a scenario has associated with it a glossary which
serves a role similar to that of the Context Statements in IDEF0. Unlike the

Context Statement in IDEF0, an IDEF3 description will normally contain a
number of scenario descriptions.

An IDEF3 diagram associated with a Scenario consists of a set of UOBs and
constraints (special relations) among the UOBs. Figure 2.2 illustrates a typical
scenario diagram in the IDEF3 syntax. The semantics of the links will be
described in a later section. Since IDEF3 is representing a description of an
organization or system it must be partial. That is to say, no claim is made by
the modeler about the completeness of the description. What claim is made is

that the description that is provided (in the set of UOBs, their associated links)
is factual (i.e., the objects and relations described in the individual UOBs do in
fact exist in the real world and stand in the prescribed relations.) This is in
contrast to other types of models (e.g., IDEF2, Petri nets, and IDEF0) where

the models represent an idealization of the real world and are assumed
complete.

K,

w

27

'PRE ,-And

Constraints

manager

I I
h

21 A1133i 131 AI!33[[

Perform Report

Visual Discrep-

Inspection ancies

SCENARIO: PROCESSING DAMAGED AIRCRAFT

WITH

IDEF0 MODEL CROSS REFERENCES

Figure 2.2. Example IDEF3 Description

A partial reading for the scenario diagram presented in Figure 2.2 would be:
Processing of a damaged aircraft begins with the successful landing of that
aircraft. The completion of this (somewhat critical) activity initiates two
independent activities, one being the initiation of the flight discrepancy report
(FDR), the other the performance of a visual inspection of the aircraft. Note
that since this is both asynchronous and a junction, an instance of both
following events will happen but that nothing can be stated about the
coordination of these events. Note that with the referent boxes, one can specify
additional constraints even on the standard junction box semantics. Note also

that distinguished roles (such as the agent roles of the pilot and the POC a/c
manager) can also be emphasized by the use of such referent boxes.
Otherwise, the objects participating in these UOBs are identified in the
elaboration language statements mapped to each UOB.

2.3 Units of Behavior

In the capture of a description of "What's going on" within an organization or

any complex system, there are a number of natural language concepts that
must be accounted for, including:

28

w

w

w

u

z
!

• function

• activity

• action

• act

• process

• operation

• event

• scenario

• decision

• procedure

Each of these concepts is used/referred to in common language to describe
'states of affairs' and change in the world around us. In the design of IDEF3, a
choice needed to be made about which of these objects referred to by the

terms above would be explicitly represented. During the design of IDEF3 it
was noted that each involves some 'circumscribed' behavior. That is, when

someone refers to the Planning activity or Make / Buy decision or the
Contract award event, that person is carving up the world around us into
chunks of time (and generally space as well) to allow the description of what's

going on in that chunk separate from the rest of the world. Therefore in
IDEF3, a decision was made to provide a generic 'Unit of Behavior' concept
which can be used to represent any of the above listed states of affairs or states

of change. Whether a Unit of Behavior is classified as an 'event' or a 'process'
or a 'function', etc., is left to the analysis of the description of that UOB and

the structure surrounding it.

Each UOB in an IDEF3 process flow description is denoted by a box. The
label inside the box is the 'display-name' of the UOB. Associated with the

UOB is a unique 'name' which is formed out of a verb or verb phrase just as
in IDEF0. Each UOB can have associated with it both 'descriptions in terms of

other UOBs' and a 'description in terms of a set of participating objects and
their relations'. We refer to the former as 'Decompositions' of a UOB and the
latter as an 'Elaboration' of a UOB (see Figure 2.3). IDEF3 further

distinguishes between decompositions which account for all the objects of the
parent UOB and those which either leave out or add to the participating
objects. The first variety are referred to as the 'Objective View', the latter as
just 'Views' (see Figure 2.4). Multiple views are allowed in IDEF3 primarily
because it is meant to be used in a description capture mode. Experience with
IDEF0 has demonstrated the need to capture different views of the same

activity. Unlike IDEF0, IDEF3 preserves the various views for latter use.

29

L

J_
_L

2

L

q

2_i
[Behavior [

..IUOB _1 I.,

Decomposition(s)

_-'__:::.:--:_:':.::.::.::.::.::7:.::.::.::.:-:':.:-:.::.::.:_::'-:'-:_:'_ _:i_:;£_:_ _:_:_!_:!:i:_ _:_:_:_:i£ _:_:_:i:;_:_:i:_:i:i:i:i:;:_:i:i:i:i:

t¢,.-,_:_-:;::::::::::::::::::::: ::

Elaboration

UOB Label:
UOB Reference Number:

Objects

Facts

............. _wwom o

Constraints

Description

Figure 2.3. Descriptions of a UOB

W

::: !!

w

w

w 3O

!

i

i

Unit
Of

Behavior

I

0 or 1
More

Decomposition

A decomposition description is formulated in terms of other UOBs (which employs the elements of

elaboration and is wholly temporally and spatially included w/'m the parent UOB). Note that sin,

decomposition is a more detailed view of the parent UOB it can contain elements not shown in

elaboration of the parent UOB but are implicitly contained within the parent UOB.

The Objective View is a decomposition of a UOB which employs all the elements of the elaboratio_
the UOB. The objective view of a UOB is a more detailed view of the UOB from the same perspecti_

as the parent UOB.

Role Views describe the parent UOB from the role perspective of one of the objects in the UO

elaboration. In most cases the object that defines the role will probably not appear in the role vice

i

i

Figure 2.4. Views as Decompositions

Since the links contain only constraints, one important point to note is that the
UOBs are the focus for the description of the time consuming elements of a

process description. Again, because of the description capture focus of IDEF3,
it is entirely reasonable for UOBs to exist without any other links to any other
UOBs. The interpretation of such free-standing UOBs is that such a referred
to state of affairs exists, but nothing more is known about its connections with
the remainder of the UOBs in the diagram in which it appears. Such a

phenomenon may appear ill formed to modelers who are used to completely
connected idealized models which form approximations of what the domain

expert knows. Experience with knowledge acquisition of domain experts (or
even the traditional interview process for information systems analysis) has

shown the predominance of the partial view of an agent in the domain of
interest. Simply, it is often the case that an agent observes or knows about far
more than he (or she) can explain. IDEF3 allows the direct representation of

the partiality of such descriptions (though in the formalization of IDEF3 a set
of criteria for 'minimal computational' completeness is provided.

Each UOB in an IDEF3 process flow description is assigned a number to assist
in the identification of that UOB for reference purposes and to establish

i 31

traceability with the IDEF0, IDEF1, IDEFIX, or other systems engineering
models. During the development of the process flow description the UOBs are
numbered sequentially by order of creation using the same scheme as is

employed in IDEF1.

2.4 Elaboration Specification Language

IDEF3 allows for three levels of elaboration language specification. The first

level is designed for use by the area expert, the second level by an
analyst/modeler, the third level by software system developers. There is a
fourth level called the meta-level which is used to establish or tailor the

languages in the other three levels. A second level UOB elaboration is

expressed in the IDEF3 situation description language. An example of such a
specification is given in Figure 2.5. This language is a standard first-order
language of the sort laid out in [Menzel 89a]. At the time of this report, an
IDEF3 domain layer of the IISyCL is being defined that can serve as the
formal recommended elaboration language. One of the features of this

language is that it supports the naming or description of specific objects,
places, times, and relations as well as the naming or description of
indeterminate objects, places, times, and relations (intuitively, variables). This
allows the IDEF3 modeler to describe easily both specific UOBs and also UOB

types. A UOB type is defined as any UOB whose elaboration contains an
indeterminate. It should be noted that in practice most of the UOBs contained
within a model will be UOB types rather than specific UOBs. This is a
consequence of the way people describe how something works or what goes on
in an organization or a system. In fact, a specific UOB description is so rare
that giving it a special symbol (like a box with rounded comers) was
considered.

w

w

w

32

w

receive
contract

Scenario: NEW PROJECT STARTUP

I organize I

--'1 I
I

I setup

] subcontracts

[activate

-'-[l'-'_ plan

T ,
_..¢1 hold I

I _ackoff I

I'1 I

--"'l_ I pre-planning
14 I t m

w

w

m

b

w

Elaboration: NPS/U5: Hold Kickoff

(<at lab, during t,
<attending, subcontractors, {x Isubcontractor(x)}; yes>

• <attending, projecLmonitor, a; yes>
• <leading, project_manager, b; yes>

<participating, project_team_members; yes>
<draft project__pian; yes>
<final project_plan; no>
<allocated, task_assignments; no>>)

-- constraint on Overlapping Kickoff Meetings --
before init of Hold_Kickoff kick_off1 0

"l'he project manager of a project can't be in two kickoff meetings
simultaneously"

[for_all x of UOB:Hold_Kickoff
((project_manager(x) = project_manager(kick_.offl)
and

not (during (T(x), T(kick_offl)) or
overlap (T(x), T(kick_offl))))]

Figure 2.5, Example of a Specification

In the elaboration, a special classification structure is provided for the
participating objects. Each object can be tagged as an 'Agent' if that object is
considered to be the effector of the UOB. Or an object can be tagged as
'Affected' if the relations to that object are created or changed by / during the
UOB. Or an object can be tagged as a 'Participant' if no causality or
transformation is associated with that object as a part of the UOB description.

Finally, an object may be tagged as 'Created' or 'Destroyed' by a particular

33

w

W

w

UOB. These classifications are optional. However, if supplied, they allow for

automated analysis against the formal semantics [Menzel 89b].

The first level IDEF3 elaboration language is intended to be captured on an
elaboration form (see Figure 2.6). An elaboration form captures the

information from the area expert in natural language textual descriptions and
presents this information in a structured manner. This elaboration form
includes (1) an object list, (2) a fact list, and (3) a constraint list. The format
for the elaboration form will include a pseudo natural language form of facts
and constraint frames that the area expert can fill in. These sentence frames

will be based upon example verb phrases and caseframes associated with these
verbs. Any natural language text in the elaboration form is composed of
simple sentences to reduce the sentence complexity and possibility of

ambiguity.

Objects on the object list are those things or individuals that participate or are
present in the occurrence of a unit of behavior. Objects are common across
units of behavior, but perceived in different ways during the process being
modeled.

Facts reference objects only if these objects are on the object list. Facts are

supposed to be descriptive and make a single point per situation. Facts will
often describe features or attributes of objects and represent information that

is known to be true.

The constraints in an elaboration describe (1) the inter- and intra- process
occurrence conditions, (2) the conditions under which an occurrence of the

process can happen, or (3) the conditions under which an occurrence can be
stops.

r
w

34

z

UOB Name:

UOB Label:

IDEF 3 Elaboration Form

UOB Reference Number:

Object Set:

Fact Set:

Constraint Set:

I

m
m

J

Figure 2.6. Example of a Specification

2.5 UOB Decompositions

In IDEF3, a UOB can have many decompositions. This allows for the capture
of different 'perspectives' of 'what's going on' in the UOB itself. These
perspectives are referred to as 'Views'. There are two major types of Views,
the 'Objective' view (of which there is only one) and the 'Role' view (of which
there can be many). In the Objective view, all of the objects and relations that

participate in the focus UOB are accounted for in the decomposition of that
UOB. The Objective view may be thought of as a composite of all of the Role
views. In a particular Role view, some of the objects or processes in the focus
UOB elaboration may not be visible. Figures 2.7 and 2.8 illustrates the
Objective and Role views of a Hold Kickoff Meeting UOB associated with an

35

w

Initiate Project scenario.illustrated in Figure 2.5. The specific meaning of the
link types and junctions will be described the next sections of this report.
However, the basic reading of the first diagram is that a new project start-up
involves the receipt of a contract followed by a number of activities in

parallel. After the subcontracts have been established and an initial project
plan is developed, a kickoff meeting is arranged and held. The results of this
meeting combined with the team organization actually enable the initiation of
the work on the project. The elaboration provided in Figure 2.5 is associated
with the Hold Kickoff Meeting UOB. Notice in this elaboration the provision

for constraint specification. In this case, we have provided both an English
language version of the constraint as well as an ISyCL specification. It is

expected that the area or domain expert would document the natural language
version first and then, with the assistance of a modeling specialist, formulate
the formalized version.

L
w

NPE/U5.o Hold Kickoff Ob.jective Decomposition

IReview I
Proposal /

P\

IReview I \ [Decideon ! [Determine

SOW __ .._Final Plan __ __ d Assignments

2 I] /#14[[151

/

Review /

Draft Plan

Close

Meeting

61

Figure 2.7. Example of an Objective View

W 36

NPF_d US.v1 Hold_Kickoff Project Managers View

Call Meeting

to order

'1

[Negotiate I

""-I Positions I

__ Ensure
Contract

Satisfaction

__ close I
Meeting]

'l I

w

w

w

2.6 Link Types

Figure 2.8. Example of a Role View

In IDEF3, links are used to denote distinguished relations between UOBs. The

constraint description language within IDEF3 provides a mechanism for
describing virtually any type of temporal, logical, conventional, or natural
constraint that may exist among a group of UOBs. By 'distinguished', we
mean that links are used to highlight important relations that the author of the

process description wishes to draw to the attention of the reader. In fact, such
relations can be expressed as constraints in the elaboration of the associated
UOBs (as described in the previous section). Three default types of links are

provided for in IDEF3, 'Dashed Links', 'Precedence Links', and 'Object Flow
Links'. These are referred to as 'default types' because in the Model

Description Language Section of an IDEF3 description, the author can create
new link types with his own default semantics to ease the display of the

particular distinguished relations between UOBs that arise in his situation.
Unlike IDEF0, there is no significance to the area of connection of a link to a
box. Links may start or terminate at any point on a UOB or junction symbols.

By convention and wherever possible, process flow descriptions are laid out so
that the flow of objects (physical or information) and temporal precedence is
ordered from left to right and top to bottom. 'Dashed Links' (DL) carry no
predefined semantics. They merely highlight the existence of a relationship
between two or more UOBs. This relationship or constraint is specified in the

link description. Such a link use allows the author to capture knowledge about
a relationship without having to provide a mechanism structure to account for

that knowledge.

37

w

__:j
W

z. _

W

'Precedence Links' (PL) are a short-hand notation for expression of simple
temporal precedence between tlae instances of one UOB type and those of
another UOB type. A PL is denoted by a solid arrow between two UOBs.
Informally, the meaning of a precedence link is that each instance of the UOB
which is the source of the link completes before the corresponding instance of

the destination of the link starts. Precedence links also carry a causality notion
in that if two UOBs are connected by a PL then an instance of the first will be

followed by an instance of the second, i.e., we can find (or create) a
corresponding instantiation of the second UOB to match the first instance.

'Object Flow Links' (OL) are a means of highlighting the participation of the
same object instance in two UOB occurrences. An OL carries the same
temporal semantics as the PL. An OL is denoted by a solid arrow between a
source and a destination UOB with a double arrow head on the destination

UOB. It is important to note that lack of an OL link does not imply a change
of object participation between two UOBs. It is just the case that the existence
of such a link indicates the certain participation of the same object in both
UOB occurrences by the author of the diagram.

Each link type has a unique identification number in a model as well as an
elaboration (see Figure 2.9) which (like a UOB elaboration) is an collection of
expressions in the constraint language. For clarity in the model layout, any
link may be deleted by adding the appropriate components of the description
associated with the link to the relevant elaborations of the involved UOBs.

These descriptions can be extended by the author as the need arises.

ia

W

38

Link Specification Form

Front UOB Name:

Front UOB Label:

Front UOB Reference Number:

Back UOB Name:

Back UOB Label:

Back UOB Reference Number:

Link Identification Number:

Object Set:

Fact Set:

Constraint Set:

w

lip

w

Figure 2.9. Link Specification Form

2.7 Junctions

Junctions in IDEF3 are used to highlight special types of constraints on the

possible sequencing relations among UOBs. Junctions in IDEF3 can be used to
describe both the logic of a decision making procedure as well as the effect of

that logic. This allows the effect of the logic to be displayed at a higher level
in the scenario description and the detailed description of the logic to be

relegated to a lower level decomposition. Figure 2.10 displays the basic

39

w

junction types provided by IDEF3. Junctions in IDEF3 are not UOBs; they do
not have a decomposition. In fact, it is best to consider them as macros of the
link language. They merely allow commonly used constraints to be expressed
quickly and concisely.

There is no commitment to computability in IDEF3 descriptions. That is, one
can easily describe a decision procedure for which there is no efficient
algorithm as well as situations that are undecidable according to the basic
theories of computing. On the other hand, there is a well defined grammar for
the use of the junction symbols with the UOB and link types. There is also a
well defined semantics for the interpretation of models created within this
grammar. If the rules of the syntax are followed, the descriptions produced
are guaranteed to have a well formed interpretation, i.e., at least void of any
logical inconsistencies. This means that interpretations can be drawn
consistently from the descriptions and that in many eases inference and
deduction can be performed directly on the models with reliable results.

-- ASYNCHRONOUS "AND"

-- SYNCHRONOUS "AND"

-- ASYNCHRONOUS "OR"

wn -- SYNCHRONOUS "OR"

-- "XOR"

Figure 2.10. Basic IDEF3 Junction Types

There are three major types of junctions 'AND', 'OR', and 'XOR' (exclusive
OR). The first two of these junction types come in both a synchronous and a
asynchronous interpretation. There is also a different interpretation for the
use of junctions to initiate a branching and junctions used to terminate a
number of links (fan-out interpretation versus fan-in interpretation). Figures
2.11 and 2.12 provide a summarization of the definitions for each junction
type both at the front and at the back of a link set. Several points should be
noted from these diagrams. First, the semantics of these junctions includes
elements of both logical operators and instantiation control. That is, when the

conditions of a junction are satisfied, the following linked UOB(s) will be
enabled for instantiation. For this reason the front and the back of link set

semantics for junctions are not strictly duals of each other as can be seen from

40

m

Figures 2.11 and 2.12. For instance an asynchronous 'OR' junction at the front
of a link set allows for any combination of the attached UOBs to happen in any
order in time. However, such a junction at the back of a link set only allows

for a single ending UOB or a set of UOBs that complete together.

Note that there is no provision for synchronous or asynchronous 'XOR' as this
junction provides only for one of the following UOBs to be
instantiated,.obviating the possibility or need for any type of synchronization.

JUNCTION TYPI_ MEANING

w - ASYNCHRONOUS "AND"

-- SYNCHRONOUS "AND"

ALL FOLLOWING UOBs WILL
EVENTUALLY HAPPEN

ALL FOLLOWING UOBs WILL
HAPPEN AND START TOGETHER

t VffT1

-- ASYNCHRONOUS "OR"

-- SYNCHRONOUS "OR"

1, OR MANY OF THE FOLLOWING
UOB's WILL EVENTUALLY HAPPEN

THE START OF WHATEVER
COMBINATION OCCURS IS SYNC'd

m

-- "XOR" EXACTLY ONE OF THE FOLLOWING
UOB's WILL EVENTUALLY HAPPEN

w

w

w

Figure 2.11. Front of Link Set Semantics For Junction Types

Finally, there are special interpretations for the use of combinations of
junctions, e.g., an AND with a following OR, versus an OR with a following
AND. In the remainder of this section, we will describe each of the types of
junctions and their various uses/meanings as well as the process for
interpreting sets of combined or mixed uses of these symbols. In our
experience to date, it so happens that most uses of junctions occur in pairs.
This is not to say that IDEF3 prevents the use of a junction to indicate the
initiation of multiple processes that proceed independently, quite the contrary.
However in the descriptions of most organizational scenarios and
corresponding user roles or information support transactions, the parallel
activities almost always converge.

41

i

w

w

w

JUNCTION TYPE MEANING

-- ASYNCHRONOUS "AND"

-- SYNCHRONOUS "AND"

ALL PRECEDING ATTACHED UOBs
MUST HAVE COMPLETED

ALL PRECEDING ATTACHED UOBs
MUST COMPLETE TOGETHER

-- ASYNCHRONOUS "OR" 1, OR MORE OF THE PRECEDING
UOB's HAS COMPLETED

-- SYNCHRONOUS "OR" THE COMPLETION OF WHATEVER
COMBINATION OCCURRED WAS
SYNC'd

-- "XOR"
EXACTLY ONE OF THE PRECEDING
UOB's HAS HAPPENED

Figure 2.12. Back of Link Set Semantics For Junction Types

Figure 2.13 illustrates one of the most frequently used junction types (the
asynchronous 'AND' junction. In the scenario depicted in this figure, the
completion of the receipt of a proposal is followed by both a cost and a
technical evaluation which must both be completed prior to the award of the
contract. Note that there is no=specified timing relationship between the cost
and technical evaluation but that both must follow the receipt, and both must

precede the award.

I RECEIVE

PROIOSAL

[EVALUATE

--I COST

[PROPOSAL

EVALUATE
TECHNICAL
PROPOSAL

AWARD

CO_RACT

w

Figure 2.13. Asynchronous "AND" Junction Example

Contrast this to the scenario displayed in Figure 2.14 in which the

synchronous 'AND' describes a situation in which the cost and technical
evaluation must start simultaneously, but still may end separately. Had there

been an organizational rule that required both these to end together as well,

42

= :

W

L

it-

w

them would have been a synchronous 'AND' at the terminal end of the branch
as well.

RECEIVE
PROPOSAL

I

] EVALUATE

--] COST

[EVALUATE

--1TECHNICAL

AWARD
iCONTRACT

Figure 2.14. Synchronous "AND" Junction Example

In Figure 2.15, we see a description of the proposal evaluation process,
hypothetically one which could have been a decomposition of either the cost or
the technical evaluation processes described in Figures 2.13 and 2.14. This
process description states that following the evaluation, one can reject the
proposal, negotiate changes, or accept the proposal or some combination of
these actions.

In this scenario description, the rejection of a proposal is a terminating
activity; however, either of the other two activities (or both) can result in the
enablement of a contract award. An important point to note in this description
is the obvious lack of specifics relative to possible interactions between the
negotiation of changes to a proposal and the proposal acceptance activity. In
some situations, this may be a complete description in that the original
proposal is either accepted or not. If not, contract award is predicated on the
contractor's accepting the terms of the funding agency. In other situations, the
contractor may be asked to resubmit proposals as a part of the negotiation

process. Either such situation can be easily represented in IDEF3.

m

43

w

w

z

J

I

w

w

r±

w

EVALUATE

PROPOSAL

] REJECT

--[PROPOSAL

-_C EGOTIATE

H_NGES

AWARD
CONTRACT

I

Figure 2.15. Asynchronous "OR" Junction Example

The final example in this section is of a pathological description which should

never be formulated in IDEF3. Figure 2.16 provides this example. In that

figure, a situation is described for which there is no possible realization. Since

the XOR describes a situation where only one of the following processes can

be realized the AND junction conditions can never be satisfied. While in a

small example, the inconsistency of this situation is obvious, it is quite often

the case that such inconsistencies really do exist in the domain being modeled.

This is usually the result of evolved policies originating in different

organizations at different points in time by different individuals, probably

responding to different pressures. Part of the purpose in the use of a

description capture method like IDEF3 is to raise these inconsistencies within

the organization to allow their resolution.

RECEIVE
PROPOSAL

I

-US3-

EVALUATE
COST

PROPOSAL

I

]EVALUATE
_IFECHNICAL

IPROPOSAL

[I

AWARD

CON_CT

Figure 2.16. Pathological "XOR"/"AND" Junction Combination example

44

W

F!

Elaborations may be attached to a junction through the use of the 'Reference
Connector' notation described in the next section. This feature allows the

author to record information about decision logic associated with a junction.
For example, in the case of an OR junction, the author may have knowledge of
the conditions under which the individual branches are chosen. Such

knowledge is expressed in an elaboration form that would be attached to the
particular junction via a reference connector.

E:N 2.8 Reference Connectors

w

Reference connectors allow the IDEF3 author to:

1) Span multiple pages in a diagram layout,
2) Indicate a loop back to a previously defined UOB,
3) Indicate that another instance of a previously defined UOB is

to be inserted at a specific point in the process (without loop
back),

4) Emphasize the description of particular objects or relations in
the elaboration,

5) Tie in specific examples of referenced data or objects (e.g.,
screen layouts),

6) Associate special constraint sets to junctions (indicate that a
junction has an elaboration that contains the facts, constraints
or decision logic which describe how that junction works),

7) Form references between the Process Flow Descriptions and
the Object State Transition descriptions.

It is often the case that users of IDEF3 will find the reference connectors a

flexible way to express ideas or concepts in lieu of the junction types and
dashed arrows/constraint language statements. The basic symbol structure of
the reference connectors is displayed in Figure 2.17. Though not shown in this
figure, referents to UOBs may carry a synchronous or asynchronous
designator identical to that of the junction symbols described previously.

45

g_

i

! Y--_

m

2.9

Referent

Type/Identifier

Locator i Page #

Referent Types: • UOB - Refers to a Unit of Behavior on or off
the diagram page.

• Junction - Refers to a specific junction.

• Elab - Refers to an elaboration (normally
used in the association of a referent

with a junction.)

• Object - Refers to an object of interest in the
UOB that the referent is connected to.

Identifier: UOB Label
Junction type label (i.e., &,O,X)
Blank if it refers to an elaboration.

Object Name or Label.

Locator: UOB# or Scenario and UOB# or Blank.

Page #: Scenario diagram page #.

Figure 2.17. Referent Syntax

Object State Transition Description

The object state transition diagram was included in the IDEF3 method to allow
for the construction of an object centered view of the organization or system.
Such a view cuts across the process diagrams and summarizes the allowable
transitions of an object in the domain. Object centered views have been found
to be useful particularly in the documentation of data life cycles. IDEF3 object
state transition descriptions allow the characterization of the states that an

object is known to exist in. This characterization includes 1) the conditions for
classification in a state, 2) the properties of objects in a state, and 3) the
conditions for transition out of that state.

Descriptions of the states of an object and the allowable transitions between
such states are collected together and displayed on an object state transition
network diagram. The basic structure of an object state transition network
(OSTN) diagram in IDEF3 is modeled after Augmented Transition Networks

(ATNs). ATNs are capable of representing any computable function [Aho 78].

46

w

w

I

w

Figures 2.18 and 2.19 display the basic elements of the object state transition
network diagram. The nodes (solid boxes) in the network represent object
states. Each OSTN has an associated elaboration form. Similarly, each object
state in an OSTN also has an elaboration form. The contents of these
elaboration forms will be described later in this section. Reference connectors

attached to the arcs of an object state transition network are used to refer to

other object transition networks, UOBs, or Scenarios that affect the transition
of an object from one state to the next. The meaning of a arc labeled with an
OSTN reference is that the corresponding named OSTN must be completed
before a transition across thaLarc can be completed. Similarly, if an arc is
labeled with a referent to a UOB or Scenario, this indicates the dependence of
that transition on instances of the UOB or Scenario. For example, in Figure

2.18 the UOB Perform Concept Demonstration & Validation must be initiated

and completed before a system can transition from Milestone 1 to Milestone 2.
In Figure 2.19 the asynchronous referent to a scenario indicates that that an
instance of that scenario must be initiated but need not complete prior to the

transition of the object from state 1 to state 2.

System at
Milestone 0

r

System at
Milestone 1

Perform I

Concept I
Exploration I

System at
Milestone 2

Pert;orm

Concept
Demonstration

& Validation

47

w

m

w

Figure 2.18. Object State Transition Network Example

i OSTNIIReferenql

I
Scenario
Referent

Object
State II

Object
State I

UOB Object
Referent State IV

w

w

u

Object
State III

Figure 2.19. Object State Transition Network Example

Though not displayed in Figure 2.18, each model element in this component of
the IDEF3 description carries the following attributes of (1) unique identifier,
(2) label (displayed with the symbol), and (3) description (an elaboration).
The elements of an OSTN elaboration that are captured on the Object State

Transition Network Description Form displayed in Figure 2.20 include:

1) OSTN Name: Display label of the object state transition
network (OSTN)

2) OSTN #: Unique identifier of the OSTN.
3) Object Name: Name of object that is the focus of this OSTN
4) OSRN Glossary: Textual Description of object state transition

network

5) OS Set: Set of object states that make up the OSTN
5) Scenario Set: Names of scenarios referenced in the OSTN
6) UOB Set: Names of UOBs referenced in this OSTN
7) OSTN Set: Names of OSTNs referenced in this OSTN

J 48

:_=7
= =

W

w

IhJ

w

i

w

w

r
w

IDEF 3 Object State Transition Network Description Form

OSTN Name: OSTN #:

Object Name:

OSTN Glossary:

OS Set:

Scenario Set: UOB Set:

OSTN Set:

r_

i

Figure 2.20. IDEF3 Object State Transition Network Form

The elements of an object state elaboration that are captured on the Object
State Description Form displayed in Figure 2.20 include:

1) Object State Name: Full unique name of the object state,
2) Object State Label: Label which appears on object state

diagrams,
3) Object State #: Unique number for the object state,

w

49

=

!

w

4) OSTN Set: Names of the Object State Transition Networks to
which the object state belongs,

5) Post-Transition Restrictions: Properties, Facts, or constraints
which must hold prior to admission of an object into this state,

6) State Description: Properties, Facts, or constraints which must
hold for all objects in the state,

7) Pre-Transition Restrictions: Properties, Facts, or constraints
which must hold prior to initiating a state transition attempt,

8) Glossary: Textual descriptions of the object state.

OS Name:

OS Label:

IDEF 3 Object State Description Form

Object Name:

OS Reference Number:

OSTN Set: Glossary:

Post Transition Restrictions:
Properties:

Facts:

Constraints:

State Description:
Properties:

Facts:

Constraints:

Pre Transition Restrictions:
Properties:

Facts:

Constraints:

w

Figure 2.21. IDEF3 Object State Description Capture Form

50

w

m

w

J

w

It is important to note that the features that define an object state may or may
not be attributes currently known to the information system. If they are, then
the OS elaboration allows for the definition of cross references to the IDEF1

model entities or attributes. In the pre- and post- transition restrictions,
conditions in terms of value restrictions on the features are normally

expressed. Most of the time, simple value restrictions on attributes of the
object will suffice for these transition restrictions. If simple value restrictions
are not convenient or powerful enough, then a set of ISyCL constraint
statements may be used. Note that the 'Post Transition Restrictions' are those
constraints that must be satisfied before a transition into a state is allowed.
Note that the 'Pre-Transition Restrictions' are those constraints that must be

satisfied before a transition into a state can be attempted. Notice also that the
Pre and Post constraints may contain references to attributes that are not

defining attributes of the object state.

3.0 IDEF3 Description Formulation

At the time of this report, the IDEF3 method is still in beta testing. The best
method for building a process flow and object state description appears to be
sensitive to the intended use of that description. In this section we summarize

several tailored methods that are being experimented with for the purpose of

constructing IDEF3 descriptions.

The basic approach for building an IDEF3 description for the purpose of
documentation of the user view of the system requirements can be summarized

in the following steps:

1) Identify scenarios.
For each Scenario do:

Identify agent objects, recipient objects, focus objects.
Identify participating UOBs in that scenario

2) For each object, identify states and state transitions.
Identify states (situations), events, actions, processes.

3) Identify process sequence for processes which account for focus
object transitions.

4) Construct process flow charts.
5) Construct OSTNs.
6) Check for consistency and completeness in the descriptions.

7) Validate description with domain experts.

w

51

J

If the purpose is to use the Process Flow Model for User Role Driven Design
(i.e., as a design specification to the software developer), then the following
activities must be added:

1) Treat each process in process flow diagram as a scenario.
2) Identify information to be displayed to the user.
3) Identify actions which user can perform.
4) Determine response of system to each action user can perform.
5) Identify process sequence of allowable user actions.

6) Determine information system state change as a result of each process
in the sequence.

7) Package information to be displayed to the user at each step in the
process sequence.

IDEF3 is similar to IDEF0 in its sensitivity to establishing a viewpoint. If the
purpose is to use the Process Flow Model for User Role Driven Design then
the following three view types are recommended in the application of the
above described method:

• The environment system (organization) view.

• The client (or user) view.

• The agent (e.g. target information system) view.

w Within an information resource management application arena, these general
views will normally translate as follows:

The environment system view will most often correspond to an
organizational system view.

The client view will normally correspond to the user functions.

The agent view will normally correspond to the information system
response to the user functions. This view will normally include the
target system view which corresponds to an information system view.

4,0 Summary

This report has presented an overview of the foundations and content of the
evolving IDEF3 process flow and object state description capture method.
This method is currently in beta test. Ongoing efforts in the formulation of

52

K,,d

w

L

m.

w

formal semantics models for descriptions captured in the outlined form and in
the actual application of this method can be expected to cause an evolution in
the method language.

5.0 Bibliography

Allen J. F., "Towards a General Theory of Action and Time,"
Artificial Intelligence (23), 1984, pp 123-154.

Balci O., Nance R. E., "Simulation Model Development
Environments: A Research Prototype," Journal of the Operational

Research Society, 38(8), 1987, pp 753-763.
Barwise, J. and Perry, J., Situations and Attitudes, The MIT Press,

Cambridge, 1983.
Cross S., "Qualitative Reasoning in an Expert System Framework",

T-124 University of Illinois Coordinated Science Lab, Urbana,
IL, 1983.

De Kleer J., "Causal and Teleological Reasoning in Circuit
Recognition," TR-529, MIT AI Lab, Cambridge, MA, 1979.

De Kleer J.,Brown J. S., "A Qualitative Physics Based on
Confluences," Artificial Intelligence (24), 1984, pp 7-83.

Devlin, K., Logic and Information, Volume I: Situation Theory,
Cambridge University Press.

Forbus K., "Qualitative Process Theory," Artificial Intelligence (24),
pp 85-168, 1984.

KBSI 91a, "Description Debugging with Qualitative Reasoning,"
Technical Report, Knowledge Based Systems, Inc., August 1991.

KBSI 91b, "KBSA Concept of Operations Document," Technical
Report, Knowledge Based Systems, Inc., August 1991.

KBSI 91c, "Qualitative Reasoning in Model Design," Technical
Report, Knowledge Based Systems, Inc., August 1991.

KBSI 91d, "KBSA System Architecture Document," Technical

Report, Knowledge Based Systems, Inc., August 1991.
KBSI 91e, "Knowledge Engineering Results for Simulation

Modeling," Technical Report, Knowledge Based Systems, Inc.,
August 1991.

KBSI 91g, "Qualitative Reasoning for Problem Solving from IDEF3
Descriptions," Technical Report, Knowledge Based Systems, Inc.,
August 1991.

Kripke, S., "Semantical Considerations on Modal Logic," Acta
Philosophica Fennica (16), 1963, pp 39-48.

w

53

r

w

k

w

w

w

w

Lin, Min-Jin, "Automatic Simulation Model Design from a Situation

Theory Based Manufacturing System Description," PhD
Dissertation, Texas A & M University, May 1990.

Link, G., "The Logical Analysis of Plurals and Mass Terms: A
Lattice Theoretic Approach," in R. Bauerle et al. (eds), Meaning,
Use, and Interpretation, Berlin, De Gruyter, 1983.

Mayer R. J., "Cognitive Skills in Modeling and Simulation," PhD
Dissertation, Texas A&M University, December 1988.

Mayer, R.J., Cullinane, T., Knappenberger, B., Wells, S., "IDEF3
Practice and Use Technical Report," Interim Technical Report,

Armstrong Laboratory, Logistics Research Division, Wright-
Patterson Air Force Base, OH Aug 1991b.

Menzel, C., "Actualism, Ontological Commitment, and Possible
World Semantics," Synthese 85 (1990), 355-389

Menzel C. P., Mayer R. J., Edwards D. D., "IDEF3 Formalization

Report," Final Technical Report, IISEE Project, Armstrong
Laboratory, Logistics Research Division, Wright-Patterson Air
Force Base, OH 1991.

Menzel, C.P., Mayer, R. J., and Edwards, D., "IDEF3 Process
Descriptions and Their Semantics," forthcoming in Kuziak, A.,

and Dagli, C., Knowledge Base Systems in Design and
Manufacturing, Chapman Publishing, forthcoming 1991.

Menzel, C., and R. Mayer, "Theoretical Foundations for Information
Representation and Constraint Specification," final technical
report, IISEE project, AFHRL/LRL, WPAFB, Ohio, March
1991.

Overstreet C. M., Nance R. E., "A Specification Language to Assist in

Analysis of Discrete Event Simulation Models," Communications
of the ACM, 28(2), 1985, pp 190-201.

Pegden C. D., Introduction to SIMAN, Systems Modeling Corp.,
1982.

Pritsker A. A.B., Pegden C. D., Introduction to Simulation and
SLAM, Halsted Press, New York, 1979.

Poole D., "A Methodology for Using a Default and Abductive

Reasoning System," International Journal of Intelligent Systems,
5, 1990, pp 521-548.

Sanders L., Mayer R. J., Menzel C. P., Keen A. A., Browne D.,

"Description Representation with Container objects," Conference
Proceedings of Autofact 91,199i.

Shannon R. E.,Mayer R. J., Adelsberger H.,"Expert Systems and
Simulation," Simulation 44(6), 1985, pp 275-284.

Simmons R., "Representing and Reasoning about Change in Geologic
Interpretation," TR-749, MIT AI Lab, Cambridge, MA, 1983.

54

w

! W

Tarski, A., "The Concept of Truth in Formalized Languages," Logic,
Semantics, and Metamathematics, Oxford University Press,

Oxford, 1956.

55

w

n

= i

k-

w

w

lw

r_

w

_-: !
w

t_
w

